3.1.56 \(\int \frac {\sqrt {a+c x^2}}{x^2 (d+e x+f x^2)} \, dx\)

Optimal. Leaf size=382 \[ -\frac {f \left (a \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )+2 c d^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (a \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )+2 c d^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d^2}-\frac {\sqrt {a+c x^2}}{d x} \]

________________________________________________________________________________________

Rubi [A]  time = 1.42, antiderivative size = 382, normalized size of antiderivative = 1.00, number of steps used = 18, number of rules used = 12, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.444, Rules used = {6728, 277, 217, 206, 266, 50, 63, 208, 1020, 1080, 1034, 725} \begin {gather*} -\frac {f \left (a \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )+2 c d^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (e-\sqrt {e^2-4 d f}\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {f \left (a \left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right )+2 c d^2\right ) \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {2} \sqrt {a+c x^2} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d^2}-\frac {\sqrt {a+c x^2}}{d x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[Sqrt[a + c*x^2]/(x^2*(d + e*x + f*x^2)),x]

[Out]

-(Sqrt[a + c*x^2]/(d*x)) - (f*(2*c*d^2 + a*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e - Sqrt[e
^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^2
*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f - e*Sqrt[e^2 - 4*d*f])]) + (f*(2*c*d^2 + a*(e^2 - 2*d*f - e*S
qrt[e^2 - 4*d*f]))*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[2]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sq
rt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])])/(Sqrt[2]*d^2*Sqrt[e^2 - 4*d*f]*Sqrt[2*a*f^2 + c*(e^2 - 2*d*f + e*Sqrt[e^2
 - 4*d*f])]) + (Sqrt[a]*e*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]])/d^2

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 217

Int[1/Sqrt[(a_) + (b_.)*(x_)^2], x_Symbol] :> Subst[Int[1/(1 - b*x^2), x], x, x/Sqrt[a + b*x^2]] /; FreeQ[{a,
b}, x] &&  !GtQ[a, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 277

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^p)/(c*(m +
1)), x] - Dist[(b*n*p)/(c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^(p - 1), x], x] /; FreeQ[{a, b, c}, x] &&
IGtQ[n, 0] && GtQ[p, 0] && LtQ[m, -1] &&  !ILtQ[(m + n*p + n + 1)/n, 0] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 725

Int[1/(((d_) + (e_.)*(x_))*Sqrt[(a_) + (c_.)*(x_)^2]), x_Symbol] :> -Subst[Int[1/(c*d^2 + a*e^2 - x^2), x], x,
 (a*e - c*d*x)/Sqrt[a + c*x^2]] /; FreeQ[{a, c, d, e}, x]

Rule 1020

Int[((g_.) + (h_.)*(x_))*((a_) + (c_.)*(x_)^2)^(p_)*((d_) + (e_.)*(x_) + (f_.)*(x_)^2)^(q_), x_Symbol] :> Simp
[(h*(a + c*x^2)^p*(d + e*x + f*x^2)^(q + 1))/(2*f*(p + q + 1)), x] + Dist[1/(2*f*(p + q + 1)), Int[(a + c*x^2)
^(p - 1)*(d + e*x + f*x^2)^q*Simp[a*h*e*p - a*(h*e - 2*g*f)*(p + q + 1) - 2*h*p*(c*d - a*f)*x - (h*c*e*p + c*(
h*e - 2*g*f)*(p + q + 1))*x^2, x], x], x] /; FreeQ[{a, c, d, e, f, g, h, q}, x] && NeQ[e^2 - 4*d*f, 0] && GtQ[
p, 0] && NeQ[p + q + 1, 0]

Rule 1034

Int[((g_.) + (h_.)*(x_))/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_) + (f_.)*(x_)^2]), x_Symbol] :> With[{q
= Rt[b^2 - 4*a*c, 2]}, Dist[(2*c*g - h*(b - q))/q, Int[1/((b - q + 2*c*x)*Sqrt[d + f*x^2]), x], x] - Dist[(2*c
*g - h*(b + q))/q, Int[1/((b + q + 2*c*x)*Sqrt[d + f*x^2]), x], x]] /; FreeQ[{a, b, c, d, f, g, h}, x] && NeQ[
b^2 - 4*a*c, 0] && PosQ[b^2 - 4*a*c]

Rule 1080

Int[((A_.) + (B_.)*(x_) + (C_.)*(x_)^2)/(((a_) + (b_.)*(x_) + (c_.)*(x_)^2)*Sqrt[(d_.) + (f_.)*(x_)^2]), x_Sym
bol] :> Dist[C/c, Int[1/Sqrt[d + f*x^2], x], x] + Dist[1/c, Int[(A*c - a*C + (B*c - b*C)*x)/((a + b*x + c*x^2)
*Sqrt[d + f*x^2]), x], x] /; FreeQ[{a, b, c, d, f, A, B, C}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 6728

Int[(u_)/((a_.) + (b_.)*(x_)^(n_.) + (c_.)*(x_)^(n2_.)), x_Symbol] :> With[{v = RationalFunctionExpand[u/(a +
b*x^n + c*x^(2*n)), x]}, Int[v, x] /; SumQ[v]] /; FreeQ[{a, b, c}, x] && EqQ[n2, 2*n] && IGtQ[n, 0]

Rubi steps

\begin {align*} \int \frac {\sqrt {a+c x^2}}{x^2 \left (d+e x+f x^2\right )} \, dx &=\int \left (\frac {\sqrt {a+c x^2}}{d x^2}-\frac {e \sqrt {a+c x^2}}{d^2 x}+\frac {\left (e^2-d f+e f x\right ) \sqrt {a+c x^2}}{d^2 \left (d+e x+f x^2\right )}\right ) \, dx\\ &=\frac {\int \frac {\left (e^2-d f+e f x\right ) \sqrt {a+c x^2}}{d+e x+f x^2} \, dx}{d^2}+\frac {\int \frac {\sqrt {a+c x^2}}{x^2} \, dx}{d}-\frac {e \int \frac {\sqrt {a+c x^2}}{x} \, dx}{d^2}\\ &=\frac {e \sqrt {a+c x^2}}{d^2}-\frac {\sqrt {a+c x^2}}{d x}+\frac {c \int \frac {1}{\sqrt {a+c x^2}} \, dx}{d}-\frac {e \operatorname {Subst}\left (\int \frac {\sqrt {a+c x}}{x} \, dx,x,x^2\right )}{2 d^2}+\frac {\int \frac {a f \left (e^2-d f\right )-e f (c d-a f) x-c d f^2 x^2}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d^2 f}\\ &=-\frac {\sqrt {a+c x^2}}{d x}-\frac {c \int \frac {1}{\sqrt {a+c x^2}} \, dx}{d}+\frac {c \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{d}-\frac {(a e) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+c x}} \, dx,x,x^2\right )}{2 d^2}+\frac {\int \frac {c d^2 f^2+a f^2 \left (e^2-d f\right )+\left (c d e f^2-e f^2 (c d-a f)\right ) x}{\sqrt {a+c x^2} \left (d+e x+f x^2\right )} \, dx}{d^2 f^2}\\ &=-\frac {\sqrt {a+c x^2}}{d x}+\frac {\sqrt {c} \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )}{d}-\frac {c \operatorname {Subst}\left (\int \frac {1}{1-c x^2} \, dx,x,\frac {x}{\sqrt {a+c x^2}}\right )}{d}-\frac {(a e) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{c}+\frac {x^2}{c}} \, dx,x,\sqrt {a+c x^2}\right )}{c d^2}-\frac {\left (f \left (2 c d^2+a \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e+\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}+\frac {\left (f \left (2 c d^2+a \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right )\right ) \int \frac {1}{\left (e-\sqrt {e^2-4 d f}+2 f x\right ) \sqrt {a+c x^2}} \, dx}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+c x^2}}{d x}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d^2}+\frac {\left (f \left (2 c d^2+a \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e+\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}-\frac {\left (f \left (2 c d^2+a \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right )\right ) \operatorname {Subst}\left (\int \frac {1}{4 a f^2+c \left (e-\sqrt {e^2-4 d f}\right )^2-x^2} \, dx,x,\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {a+c x^2}}\right )}{d^2 \sqrt {e^2-4 d f}}\\ &=-\frac {\sqrt {a+c x^2}}{d x}-\frac {f \left (2 c d^2+a \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e-\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )}}+\frac {f \left (2 c d^2+a \left (e^2-2 d f-e \sqrt {e^2-4 d f}\right )\right ) \tanh ^{-1}\left (\frac {2 a f-c \left (e+\sqrt {e^2-4 d f}\right ) x}{\sqrt {2} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )} \sqrt {a+c x^2}}\right )}{\sqrt {2} d^2 \sqrt {e^2-4 d f} \sqrt {2 a f^2+c \left (e^2-2 d f+e \sqrt {e^2-4 d f}\right )}}+\frac {\sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d^2}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 3.03, size = 569, normalized size = 1.49 \begin {gather*} \frac {\frac {\left (e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \left (\sqrt {c} \left (\sqrt {e^2-4 d f}-e\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )-\sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )} \tanh ^{-1}\left (\frac {2 a f+c x \left (\sqrt {e^2-4 d f}-e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2-2 c \left (e \sqrt {e^2-4 d f}+2 d f-e^2\right )}}\right )\right )}{f \sqrt {e^2-4 d f}}+\frac {\left (-e \sqrt {e^2-4 d f}-2 d f+e^2\right ) \left (\sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )} \tanh ^{-1}\left (\frac {2 a f-c x \left (\sqrt {e^2-4 d f}+e\right )}{\sqrt {a+c x^2} \sqrt {4 a f^2+2 c \left (e \sqrt {e^2-4 d f}-2 d f+e^2\right )}}\right )+\sqrt {c} \left (\sqrt {e^2-4 d f}+e\right ) \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a+c x^2}}\right )\right )}{f \sqrt {e^2-4 d f}}+2 \sqrt {a+c x^2} \left (\frac {e^2-2 d f}{\sqrt {e^2-4 d f}}+e\right )+2 \sqrt {a+c x^2} \left (\frac {2 d f-e^2}{\sqrt {e^2-4 d f}}+e\right )-\frac {4 d \left (-\sqrt {a} \sqrt {c} x \sqrt {\frac {c x^2}{a}+1} \sinh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}\right )+a+c x^2\right )}{x \sqrt {a+c x^2}}-4 e \left (\sqrt {a+c x^2}-\sqrt {a} \tanh ^{-1}\left (\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )\right )}{4 d^2} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[a + c*x^2]/(x^2*(d + e*x + f*x^2)),x]

[Out]

(2*(e + (e^2 - 2*d*f)/Sqrt[e^2 - 4*d*f])*Sqrt[a + c*x^2] + 2*(e + (-e^2 + 2*d*f)/Sqrt[e^2 - 4*d*f])*Sqrt[a + c
*x^2] - (4*d*(a + c*x^2 - Sqrt[a]*Sqrt[c]*x*Sqrt[1 + (c*x^2)/a]*ArcSinh[(Sqrt[c]*x)/Sqrt[a]]))/(x*Sqrt[a + c*x
^2]) + ((e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])*(Sqrt[c]*(-e + Sqrt[e^2 - 4*d*f])*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x
^2]] - Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f + c*(-e + Sqrt[e^2 - 4*d*f])*x)
/(Sqrt[4*a*f^2 - 2*c*(-e^2 + 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]))/(f*Sqrt[e^2 - 4*d*f]) + ((e^2 -
 2*d*f - e*Sqrt[e^2 - 4*d*f])*(Sqrt[c]*(e + Sqrt[e^2 - 4*d*f])*ArcTanh[(Sqrt[c]*x)/Sqrt[a + c*x^2]] + Sqrt[4*a
*f^2 + 2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*ArcTanh[(2*a*f - c*(e + Sqrt[e^2 - 4*d*f])*x)/(Sqrt[4*a*f^2 +
2*c*(e^2 - 2*d*f + e*Sqrt[e^2 - 4*d*f])]*Sqrt[a + c*x^2])]))/(f*Sqrt[e^2 - 4*d*f]) - 4*e*(Sqrt[a + c*x^2] - Sq
rt[a]*ArcTanh[Sqrt[a + c*x^2]/Sqrt[a]]))/(4*d^2)

________________________________________________________________________________________

IntegrateAlgebraic [C]  time = 0.58, size = 343, normalized size = 0.90 \begin {gather*} -\frac {\text {RootSum}\left [\text {$\#$1}^4 f-2 \text {$\#$1}^3 \sqrt {c} e-2 \text {$\#$1}^2 a f+4 \text {$\#$1}^2 c d+2 \text {$\#$1} a \sqrt {c} e+a^2 f\&,\frac {-\text {$\#$1}^2 a e f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+a^2 e f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} c^{3/2} d^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )-2 \text {$\#$1} a \sqrt {c} d f \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )+2 \text {$\#$1} a \sqrt {c} e^2 \log \left (-\text {$\#$1}+\sqrt {a+c x^2}-\sqrt {c} x\right )}{2 \text {$\#$1}^3 f-3 \text {$\#$1}^2 \sqrt {c} e-2 \text {$\#$1} a f+4 \text {$\#$1} c d+a \sqrt {c} e}\&\right ]}{d^2}-\frac {2 \sqrt {a} e \tanh ^{-1}\left (\frac {\sqrt {c} x}{\sqrt {a}}-\frac {\sqrt {a+c x^2}}{\sqrt {a}}\right )}{d^2}-\frac {\sqrt {a+c x^2}}{d x} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[Sqrt[a + c*x^2]/(x^2*(d + e*x + f*x^2)),x]

[Out]

-(Sqrt[a + c*x^2]/(d*x)) - (2*Sqrt[a]*e*ArcTanh[(Sqrt[c]*x)/Sqrt[a] - Sqrt[a + c*x^2]/Sqrt[a]])/d^2 - RootSum[
a^2*f + 2*a*Sqrt[c]*e*#1 + 4*c*d*#1^2 - 2*a*f*#1^2 - 2*Sqrt[c]*e*#1^3 + f*#1^4 & , (a^2*e*f*Log[-(Sqrt[c]*x) +
 Sqrt[a + c*x^2] - #1] + 2*c^(3/2)*d^2*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 + 2*a*Sqrt[c]*e^2*Log[-(Sqr
t[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - 2*a*Sqrt[c]*d*f*Log[-(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1 - a*e*f*Log[-
(Sqrt[c]*x) + Sqrt[a + c*x^2] - #1]*#1^2)/(a*Sqrt[c]*e + 4*c*d*#1 - 2*a*f*#1 - 3*Sqrt[c]*e*#1^2 + 2*f*#1^3) &
]/d^2

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(f*x^2+e*x+d),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(f*x^2+e*x+d),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:Eval
uation time: 5.11Error index.cc index_gcd Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.02, size = 3703, normalized size = 9.69 \begin {gather*} \text {output too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*x^2+a)^(1/2)/x^2/(f*x^2+e*x+d),x)

[Out]

-2*f^2/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)
^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+2*f/(e+
(-4*d*f+e^2)^(1/2))^2*c^(1/2)*ln((-1/2*c*(e+(-4*d*f+e^2)^(1/2))/f+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+
((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f
+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))+2*f/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*c^(1/2)*ln(
(-1/2*c*(e+(-4*d*f+e^2)^(1/2))/f+c*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)
^2*c-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c
*e^2)/f^2)^(1/2))*e+2/(e+(-4*d*f+e^2)^(1/2))^2*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1
/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(
1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2
))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*
d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*c*e+4*f^2/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)
*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*
f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+
2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*
(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^
(1/2))/f))*a-4*f/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+
c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+
(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4
*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*
e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f))*c*d+2/(e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+
e^2)^(1/2)*2^(1/2)/(((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln((((-4*d*f+e^2)^(1/2)*c*e+2*a*
f^2-2*c*d*f+c*e^2)/f^2-c*(e+(-4*d*f+e^2)^(1/2))/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*(((-4*d*f+e^2)^
(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e+(-4*d*f+e^2)^(1/2))
/f*(x+1/2*(e+(-4*d*f+e^2)^(1/2))/f)+2*((-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x+1/2*(e+(-4
*d*f+e^2)^(1/2))/f))*c*e^2+4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))/a/x*(c*x^2+a)^(3/2)-4*f/(-e+(-4*
d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2))*c/a*x*(c*x^2+a)^(1/2)-4*f/(-e+(-4*d*f+e^2)^(1/2))/(e+(-4*d*f+e^2)^(1/2)
)*c^(1/2)*ln(c^(1/2)*x+(c*x^2+a)^(1/2))+2*f^2/(-e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*(4*(x-1/2*(-e+(-4*d
*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*
e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)+2*f/(-e+(-4*d*f+e^2)^(1/2))^2*c^(1/2)*ln((-1/2*c*(e-(-4*d*f+e^2)^(1/2))/f+
c*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))/c^(1/2)+((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f
*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))-2*f/(-e+(-4
*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*c^(1/2)*ln((-1/2*c*(e-(-4*d*f+e^2)^(1/2))/f+c*(x-1/2*(-e+(-4*d*f+e^2)^(1
/2))/f))/c^(1/2)+((x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/
2))/f)+1/2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))*e+2/(-e+(-4*d*f+e^2)^(1/2))^2*2^(1/2)/(
(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)
/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^
2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(
-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1
/2))/f))*c*e-4*f^2/(-e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*
d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/
2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2
*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2
)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*a+4*f/(-e+(-4*d*f+e^2)^(1/2)
)^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^
(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*
((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-
4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(
1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*c*d-2/(-e+(-4*d*f+e^2)^(1/2))^2/(-4*d*f+e^2)^(1/2)*2^(1/2)/((-(-4*d*f
+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2)*ln(((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2-c*(e
-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)+1/2*2^(1/2)*((-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f
+c*e^2)/f^2)^(1/2)*(4*(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f)^2*c-4*c*(e-(-4*d*f+e^2)^(1/2))/f*(x-1/2*(-e+(-4*d*f+e^
2)^(1/2))/f)+2*(-(-4*d*f+e^2)^(1/2)*c*e+2*a*f^2-2*c*d*f+c*e^2)/f^2)^(1/2))/(x-1/2*(-e+(-4*d*f+e^2)^(1/2))/f))*
c*e^2+16*f^2*e/(-e+(-4*d*f+e^2)^(1/2))^2/(e+(-4*d*f+e^2)^(1/2))^2*a^(1/2)*ln((2*a+2*a^(1/2)*(c*x^2+a)^(1/2))/x
)-16*f^2*e/(-e+(-4*d*f+e^2)^(1/2))^2/(e+(-4*d*f+e^2)^(1/2))^2*(c*x^2+a)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {c x^{2} + a}}{{\left (f x^{2} + e x + d\right )} x^{2}}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x^2+a)^(1/2)/x^2/(f*x^2+e*x+d),x, algorithm="maxima")

[Out]

integrate(sqrt(c*x^2 + a)/((f*x^2 + e*x + d)*x^2), x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {\sqrt {c\,x^2+a}}{x^2\,\left (f\,x^2+e\,x+d\right )} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + c*x^2)^(1/2)/(x^2*(d + e*x + f*x^2)),x)

[Out]

int((a + c*x^2)^(1/2)/(x^2*(d + e*x + f*x^2)), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\sqrt {a + c x^{2}}}{x^{2} \left (d + e x + f x^{2}\right )}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*x**2+a)**(1/2)/x**2/(f*x**2+e*x+d),x)

[Out]

Integral(sqrt(a + c*x**2)/(x**2*(d + e*x + f*x**2)), x)

________________________________________________________________________________________